Diffuse Scattering Studies from an Fe-Pd Alloy

Trevor R. Finlayson ${ }^{\text {a }}$, Garry J. McIntyre ${ }^{\text {b }}$ and Kirrily C. Rule ${ }^{\text {b }}$

THE UNIVERSITY OF Onsto

Background

This project had its beginnings in the pioneering work of McIntyre et al. on the VIVALDI instrument at the Institute Laue-Langevin [1] to use the neutron Laue technique to map diffuse scattering and particularly low-energy, phonon scattering [2]. The availability of a large single crystal of $\mathrm{Fe}-\mathrm{Pd}$, of nominal composition $\mathrm{Fe}-30 \mathrm{at} \% \mathrm{Pd}$, prompted our initial diffraction measurement on the KOALA instrument.

Relevant Properties of Fe-Pd

- For the composition range $\mathrm{Fe}-\mathrm{xat} \% \mathrm{Pd}$ (where $30 \leq x \leq 32$), alloys transform martensitically, exhibiting quite complex structural behaviour on being cooled to low temperatures from room temperature (Figure 1).
- From x-ray diffraction studies, Seto et al. [4] suggested an "intermediate state" between the austenite (fcc) and martensite (fct) phases characterised by a "two-tetragonal-mixed" phase (Figure 2).
- From neutron scattering studies, the same authors [5] observed quasielastic scattering which increased as the crystal temperature approached the fcc to "intermediate phase" transition, (Figure 3) which they interpreted as "embryonic fluctuations" of the low-temperature structure.
- Earlier work [6] employing neutron inelastic scattering, suggested the fcc to fct transformation was driven by the softening of low-q, $[\zeta \zeta 0][\zeta \bar{\zeta} 0]$ (or TA $_{1}$) phonons (Figure 4).

Aims of Current Project

(i) To study the diffuse scattering from the Fe-Pd crystal over the range $80 \mathrm{~K} \leq \mathrm{T} \leq 400 \mathrm{~K}$;
(ii) To investigate the source of observed diffuse scattering.

Available Single Crystal

Nominally, Fe-30at\%Pd in the form of an oblique cylinder, 7.7 mm high and diameter tapering from 10 mm to 12 mm (Figure 5). The parallel end faces are known to be $\{110\}$.
Crystal originally supplied by Dr. Ryuichiro Figure 5 . Sketch of Oshima, Osaka University, Japan, and machined $\begin{gathered}\text { crystal. Used } \\ \mathrm{Fe}-30 a \mathrm{P} \\ \text { Sid } \\ \text { ingle } \\ \text { the }\end{gathered}$ from a large ingot grown by the Bridgman current project. technique.
A triangular prism ($\sim 3 \mathrm{~mm}$ wide and 2 mm high) was electro-discharge machined from one edge of the crystal, as illustrated in Figure 5, making an ideal sample for a Laue experiment.

Figure 4. Temperature dependence of the $[\zeta \zeta 0][\zeta \bar{\zeta} 0]$ (or TA_{1}) phonon branch for an
$\mathrm{Fe}-28$ at $\% \mathrm{Pd}$ $\mathrm{Fe}-28 \mathrm{at} \% \mathrm{Pd}$ crystal which exhibited an fcc to fct transformation at 265 K . (After Sato et al. [6].)

Preliminary Experiment

A Laue diffraction measurement was made at room temperature on the KOALA instrument, using the whole single crystal, with a 2 mm beam aperture. The result (Figure 6) showed a rich display of diffuse scattering, with the diffraction pattern being successfully indexed on the basis of the space group Fm3m with $\mathrm{a}_{0}=3.785 \AA, \mathrm{~d}_{\text {min }}=0.05 \AA$ and $\lambda_{\text {min }}$ $=0.77 \AA$ A.

Figure. 6. Diffraction pattern from the whole crystal at room temperature, on the KOALA instrument. The major diffraction spot at about "10 o'clock" of the centre, is $(00 \bar{l})(l=2,4,6)$ with the $(00 \overline{2})$ corresponding to $\lambda=2.47 \AA$. The eight labelled satellites have been indexed and averaging over the magnitudes of the two sets of indices, gives a likely propagation vector of 0.208 ± 0.0370 with $(00 \overline{2})$ being the fundamental reflection, and the other satellites generated by a four-fold rotation. The outer spots with unlabelled small squares, are likely second-order satellites.

Current Experiments

Two experiments have been carried out at OPAL:
P6444 involved two days at KOALA (March, 2018) and eight days at TAIPAN (August, 2018); and
DB7608 involved one day at KOALA (May, 2019) and five days at SIKA (May, 2019).

Results: KOALA

While the transformations were evident from the temperature dependence of main diffraction spots from the ideally small crystal piece, (e.g., Figure 8), the interesting satellites highlighted in Figure 6 from the whole crystal were not observed, even after exposure times of 63 mins (Figure 7).

Figure 7. RT diffraction pattern from the small triangular prism piece of crystal.

Figure 8. Temperature dependence of the (200) diffraction spot a Figure 7.

Results: TAIPAN

Temperature dependences for elastic mesh scans around ($00 \overline{2}$) and ($1 \overline{1} 1$) reflections in hhl scattering plane. The transformations in the crystal were evident (e.g., Figure 9).
No evidence for interesting diffuse satellites.

Results: SIKA

Temperature dependence for elastic and inelastic mesh scans around (200) reflection in hkO scattering plane and some TA_{1} phonons.
First-order satellites observed and shown to involve elastic scattering to within 1 meV and the propagation vector around the (200) of -0.180 ± 0.186

Figure 9. Elastic mesh scans around the $(00 \overline{2})$ reflection.

Figure 10. RT mesh scans around (200) reflection for elastic scattering (left) and 1 meV energy transfer (right), showing firstorder satellites seen in initial KOALA experiment.
± 0.034 (Figure 10).

What Next?

What is the origin of these interesting satellites? Why have they not been observed from an ideally small piece of the crystal at KOALA? Hence, Proposal P9208 (September, 2020)?

[^0]
[^0]: G.J. McIntyre, M.H. Lemke-Cailleau and C. Wilkinson, Physica B, 385-6, 055-8 (2006) G.J. McIntyre, H. Kohlman and B.T.M. Willis, Acta Cryst., A67, C129-30 (2011). M. Sugiyama, R. Oshima and F.E. Fujita, Trans. Japn. Inst. Met., 25, 585-92 (1984) M. Sugiyama, R. Oshima and F.E. Fupita, Trans. Japn. Inst. Met., 25,595 .
 H. Seto, Y. Noda and Y. Yamada, J. Phys. Soc. Japn., 59, $965-77$ (1990). H. Seto, Y. Noda and Y. Yamada, J. Phys. Soc. Japn., 59, 978-86 (1990). M. Sato, B.H. Grier, S.M. Shapiro and H. Miyajima, J. Phys. F: Met. Phys., 12, 2117-29 (1982).

