
Bayesian statistics

Encodes knowledge about system as a (prior) probability distribution 
(constraints).

Estimates the parameter (posterior) probability distribution using Markov 
Chain Monte Carlo.

Can compare different models and choose which is best.
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• Simultaneous co-refinement of Neutron and X-ray data
• Bayesian statistics for uncertainty quantification and model 

selection

• Enables REPRODUCIBLE RESEARCH
• Open source, Python based with analyses performed in Jupyter

notebooks, a Qt GUI, or scripts

• Modular construction of structural models, problem specific 
parameterization (e.g. LipidLeaflet)

• Mixed area models

Qt GUI

• GUI offers easy setup for novice users, YouTube video tutorials
• Batch fitting/corefinement

Jupyter Notebooks
• Notebooks mix executable code, narrative text, and graphics within a single 

document.
• Distributing Notebooks as supplementary information facilitates 

reproducible research, readers can do the same analysis as you did.

Data Science Software
Python has exploded in popularity for data science. refnx leverages well 
tested and high performant libraries such as:

numpy + scipy à array computing and least squares

emcee, dynesty, pymc3 à Bayesian statistics

schwimmbad à MPI for parallelised cluster computing

refnx iis free, working on Linux/macOS/Windows.
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slices (head/tail regions), but the Spline has many thin slices
approximating the smooth curve. Each of these slices has
uniform SLD, with the Névot–Croce approach being used to
describe the roughness between them (Névot & Croce, 1980).

The Structure object is used to construct a Reflect-

Model object. This object is responsible for calculating the
resolution-smeared reflectivity of the Structure, scaling the
data and adding a Q-independent constant background [via
the scale and background Parameter objects; Q = (4!/
")sin(!), where ! is the angle of incidence and " is the
wavelength of the incident radiation]. There are different
types of smearing available: constant dQ/Q, point-by-point
resolution smearing read from the data set of interest or via a
smearing probability kernel of arbitrary shape (Nelson &
Dewhurst, 2014). The constant dQ/Q and point-by-point
smearing use Gaussian convolution, with dQ representing the
full width at half-maximum (FWHM) of a Gaussian approx-
imation to the instrument resolution function (van Well &
Fredrikze, 2005).

2.2. Model/data comparison

The Objective class is the comparator of the predicted
and measured reflectivities, using the ReflectModel and a
data set, Data1D, to calculate #2, log-likelihood [equation
(2)], log-prior, residuals and the generative model. The
Data1D object has x, x_err, y and y_err attributes to represent
Q, dQ, R and dR, respectively. As is standard for many
reflectometry data files, the Data1D object reads a three- or
four-column plain-text datafile. A three-column data set
represents Q (Å!1), R and dR (one standard deviation). A
four-column data set represents Q (Å!1), R, dR and dQ (Å!1).
dR is the uncertainty in the reflectivity, R, and dQ specifies the
FWHM of the instrument resolution function, for each data
point. Extending Data1D would allow other formats to be
read – at the moment there is no standardized data format for
reflectometry. One example of this could be a wavelength-
dispersive file using (!, ") data instead of Q, such as that used
in energy-scanned X-ray reflectometry, or sometimes
produced by wavelength-dispersive neutron reflectometers. In
such a case, ReflectModel could be subclassed to make full
use of this energy-dispersive information. The creation of a
standardized data format for reflectometry would facilitate
ingestion of data and allow other important information, such
as experimental metadata, to be used.

An Objective can be given a Transform object to
permit fitting as log10R versus Q or RQ4 versus Q; the default
(no Transform) is R versus Q. Several Objective objects
can be combined to form a GlobalObjective for co-
refinement. The object-oriented nature of the program allows
reuse of Parameter and Component objects, and this is the
basis for linking parameters between samples for co-refine-
ment. For a comprehensive demonstration of multiple-
contrast co-refinement, see the annotated notebook in the
supporting information.

2.3. Statistical comparison and model refinement

The Objective statistics are used directly by the
CurveFitter class to perform least-squares fitting with the
functionality provided by the SciPy package (Differential
Evolution, Levenberg–Marquardt, LBFGSB – limited
Broyden–Fletcher–Goldfarb–Shanno with bounds). Addi-
tional SciPy solvers can be added relatively simply and it
would be possible for other minimizers to use Objective

directly. CurveFitter can also perform Bayesian Markov-
chain Monte Carlo (MCMC) sampling of the system, exam-
ining the posterior probability distribution of the parameters
[equation (1)]. The posterior distribution is proportional to
the product of the prior probability and the likelihood (or the
sum of the log-probabilities):
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The prior, p($ | I), is the probability distribution function for a
parameter, $, given pre-existing knowledge of the system, I, as
outlined above. The likelihood [equation (2)], p(D | $, I), is
the probability of the observed data, D, given the model
parameters and other prior information. It is calculated from
the measured data, yn (with uncertainties %n), and the
generative model, ymodel, n. The likelihoods that are used here
assume that the measurement uncertainties are normally
distributed [equation (2)]. However, other types of measure-
ment uncertainties (e.g. Poissonian) could be implemented by
a subclass of Objective, overriding the log-likelihood
method. The model evidence, p(D | I), is a normalizing factor.

The posterior probability, p($ | D, I), describes the distri-
bution of parameter values consistent with the data and prior
information. In the simplest form, this is akin to a confidence
interval for a parameter derived by least-squares analysis.
However, when parameters are correlated, or two models give
a similar quality of fit (‘multi-modality’), a simple confidence
interval can be misleading. The posterior probability is
derived by encoding the likelihood and prior distributions and
then using an MCMC algorithm (via the emcee and ptemcee
packages) to perform affine-invariant ensemble sampling
(Foreman-Mackey et al., 2013; Vousden et al., 2016). At the
end of an MCMC run, the parameter set possesses a number
of samples (called a ‘chain’); the samples reveal the distribu-
tion and covariance of the parameters, the spread of the
model-predicted measurements around the data and, in a
reflectometry context, the range of SLD profiles that are
consistent with the data. The chain statistics are used to
update each Parameter value and assign a standard uncer-
tainty. For the sampling, these represent the median and half
of the [15.87, 84.13] percentile range, respectively; the latter
approximates the standard deviation for a normally distrib-
uted statistic.

The ptemcee package is a variant (a ‘fork’ in open-source
software development terms) of the emcee package that has
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dR is the uncertainty in the reflectivity, R, and dQ specifies the
FWHM of the instrument resolution function, for each data
point. Extending Data1D would allow other formats to be
read – at the moment there is no standardized data format for
reflectometry. One example of this could be a wavelength-
dispersive file using (!, ") data instead of Q, such as that used
in energy-scanned X-ray reflectometry, or sometimes
produced by wavelength-dispersive neutron reflectometers. In
such a case, ReflectModel could be subclassed to make full
use of this energy-dispersive information. The creation of a
standardized data format for reflectometry would facilitate
ingestion of data and allow other important information, such
as experimental metadata, to be used.

An Objective can be given a Transform object to
permit fitting as log10R versus Q or RQ4 versus Q; the default
(no Transform) is R versus Q. Several Objective objects
can be combined to form a GlobalObjective for co-
refinement. The object-oriented nature of the program allows
reuse of Parameter and Component objects, and this is the
basis for linking parameters between samples for co-refine-
ment. For a comprehensive demonstration of multiple-
contrast co-refinement, see the annotated notebook in the
supporting information.

2.3. Statistical comparison and model refinement

The Objective statistics are used directly by the
CurveFitter class to perform least-squares fitting with the
functionality provided by the SciPy package (Differential
Evolution, Levenberg–Marquardt, LBFGSB – limited
Broyden–Fletcher–Goldfarb–Shanno with bounds). Addi-
tional SciPy solvers can be added relatively simply and it
would be possible for other minimizers to use Objective

directly. CurveFitter can also perform Bayesian Markov-
chain Monte Carlo (MCMC) sampling of the system, exam-
ining the posterior probability distribution of the parameters
[equation (1)]. The posterior distribution is proportional to
the product of the prior probability and the likelihood (or the
sum of the log-probabilities):

pð$ j D; IÞ ¼ pð$ j IÞ pðD j $; IÞ
pðD j IÞ

; ð1Þ

pðD j $; IÞ ¼ ! 1

2

X

n

yn! ymodel;n

%n

! "2

þ logð2!%2
nÞ

" #

: ð2Þ

The prior, p($ | I), is the probability distribution function for a
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interval can be misleading. The posterior probability is
derived by encoding the likelihood and prior distributions and
then using an MCMC algorithm (via the emcee and ptemcee
packages) to perform affine-invariant ensemble sampling
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end of an MCMC run, the parameter set possesses a number
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model-predicted measurements around the data and, in a
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Range of structures consistent with data

Corner plot showing probability distributions for parameters

Modular design

Structures are a series of Components, each of which describes a subset of 
the interface.

• Slab – uniform SLD over a set thickness.

• Spline – freeform description of SLD profile using splines.

• LipidLeaflet – describes a head/tail region of an amphiphile. 
Parameterised using Area Per Molecule to ensure 1:1 head to tail 
equivalency.

• FreeformVFP – volume fraction profile modelling of a polymer brush, 
adsorbed amount is bound by a Gaussian prior.

Different interfacial roughnesses are available: 
Gaussian/Tanh/Linear/Exponential/Sinusoidal/Step

https://github.com/refnx/refnx


