Structural polymorphism and magnetic behavior of Li₃Co₂SbO₆

Alex Brown¹, Qingbo Xia¹, Max Avdeev^{1,2}, Brendan Kennedy¹, Chris Ling¹ 1. School of Chemistry, the University of Sydney. 2. Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation

Introduction

- Layered oxides with the general formula $A_3M_2XO_6$ (A = Li, Na; M = transition metals such as Co, Cu, Ni; X = Bi, Sb, Te; $0 \le x \le 3$) can form a crystallographic 'honeycomb' structure where one third of the transition metal sites are doped with high charge cations such as Sb⁵⁺ and Te⁶⁺.¹⁻⁴
- Layered-honeycomb oxides are materials that exhibit an array of interesting properties, including use as electrodes for Li-ion batteries, high electrical conductivity, low temperature magnetic phases, and spin-glass properties.¹
- The compound Li₃Co₂SbO₆ had been relatively underrepresented in the literature on the $Li_3M_2SbO_6$ honeycomb-type phases. It has been described with a less crystalline ion-exchange synthesis from the Na analogue Na₃Co₂SbO₆ but not solid-state synthesis.³ Here, we report the solid-state synthesis, crystal structures and magnetism of Li₃Co₂SbO₆ in two polymorphs.⁴

Experimental Methods

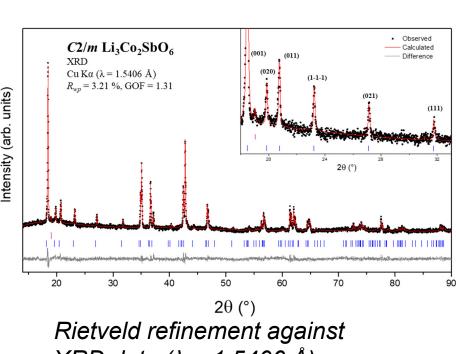
Samples were synthesized by high temperature solid-state reactions, with the most crystalline samples of Li₃Co₂SbO₆ achieved by using the precursor Li_3SbO_4 in the following reaction:

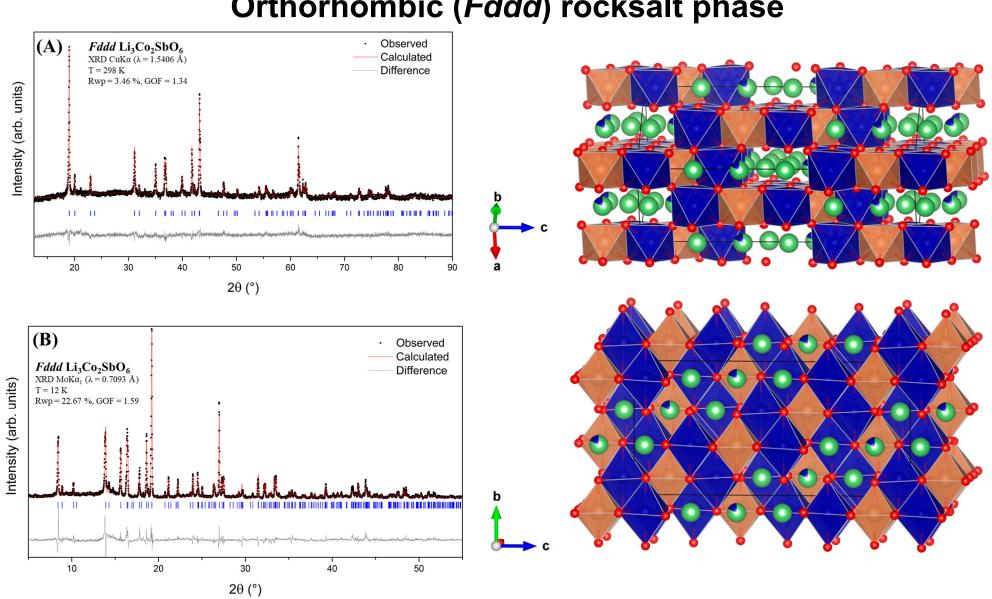
900 °C, flowing Ar

 $Li_3SbO_4 + 2CoO \longrightarrow Li_3Co_2SbO_6$

- X-ray (XRD) and neutron powder diffraction (NPD) were collected at RT to determine crystal structures. NPD measurements below T_N and in-field were also performed to determine magnetic structures.
- Magnetometry and heat capacity data collected on a PPMS down to 2 K.

References

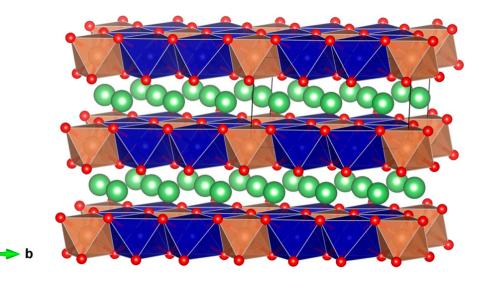

- Meng, Y. et al., Mater. Sci. Eng. R Rep. 2012, 73, 51-65.
- Nalbandyan, V. *et al., Phys. Rev. B* . 2017,
- Stratan, M.I. et al., New J. Chem. 2019, 43, 13545-13553
- Brown, A.J. et al., Inorg. Chem. 2019, 58, 20, 13881–13891
- West, A. J. et al., Mater. Chem. 1995. 5. 1177-1182


Alex Brown alexander.brown@Sydney.edu.au

Crystal Structures and Rietveld Refinement

- ordering.⁵

XRD data ($\lambda = 1.5406$ Å)



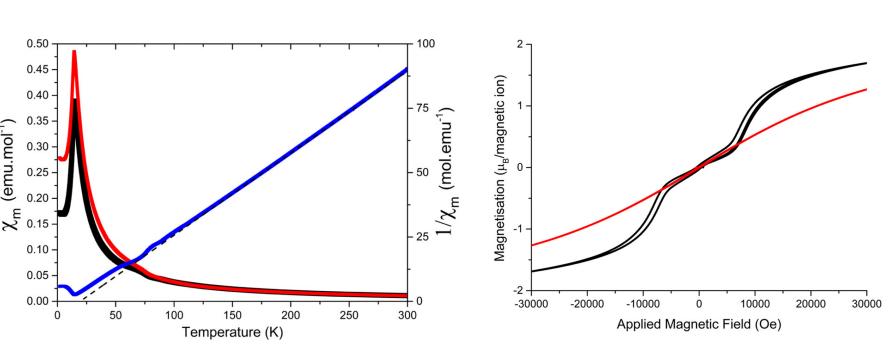
Rietveld refinement of the 12 K under a vacuum.

Li₃Co₂SbO₆ is found to adopt two highly distinct structural forms depending on slight changes to synthesis conditions (namely Li stoichiometry, particle size and reaction temperatures)⁴:

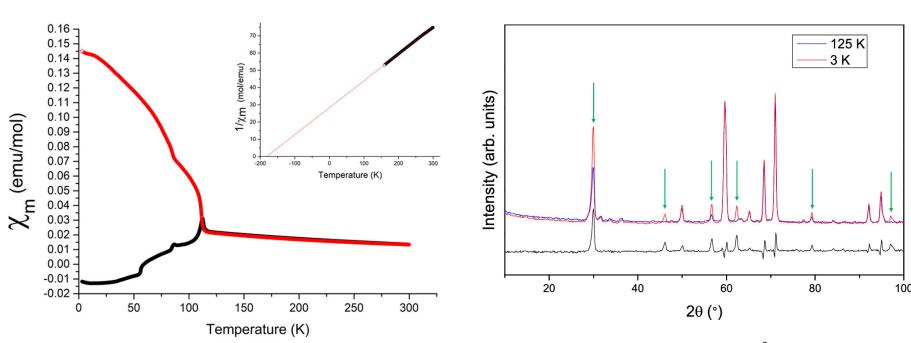
A pseudohexagonal (monoclinic C2/m) layered O3-LiCoO₂ type phase with "honeycomb" 2:1 ordering of Co and Sb. 2. An orthorhombic (*Fddd*) rocksalt phase, isostructural with Li₃Co₂TaO₆ but with the addition of significant Li/Co

C2/*m* O3-type honeycomb phase

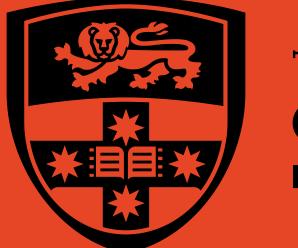
 CoO_6 octahedra are blue, SbO₆ octahedra are bronze, O atoms are red, and Li atoms are green


Orthorhombic (Fddd) rocksalt phase

orthorhombic Fddd phase against XRD data from (A) a Cu K α source (λ = 1.5418 Å) at 298 K and (B) a Mo K α_1 source ($\lambda = 0.7093$ Å) at

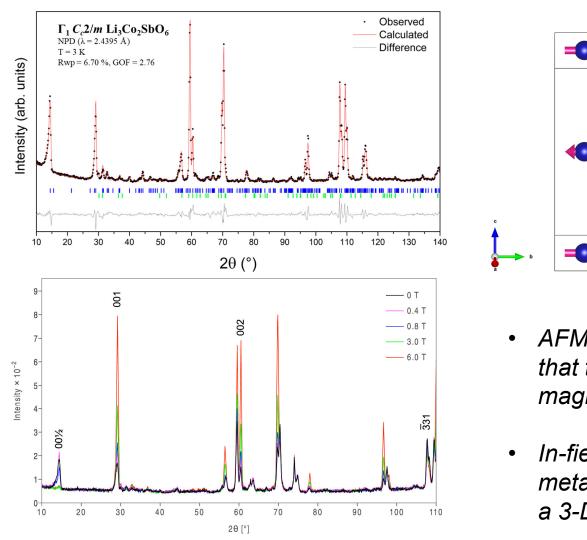

Colored wedges show mixed occupancies.

Magnetic Properties


- Both phases show long range antiferromagnetic (AFM) order at low temperatures.
- The honeycomb phase undergoes a transition to AFM order below $T_N = 14$ K. Isothermal magnetisation below T_N shows hysteresis with clear evidence for a metamagnetic transition at H \approx 0.7 T
- The orthorhombic phase orders antiferromagnetically below $T_N = 112$ K and then undergoes two more transitions at 80 and 60K.

Temperature-dependent DC magnetic susceptibility (χ_m) and inverse magnetic susceptibility $(1/\chi_m)$ for the honeycomb phase of $Li_3Co_2SbO_6$, using an applied field of 0.1 T. The ZFC curve is black. the FC curve is red, and the inverse susceptibility is blue.

Magnetic susceptibility as a function of *temperature for the orthorhombic* phase of $Li_3Co_2SbO_6$ in an applied field of 0.1 T. ZFC data are black and FC data are red. The inset shows the Curie–Weiss fit to ZFC inverse susceptibility above 160 K.


SYDNFY

Isothermal field-dependent magnetization of the honeycomb phase of Li₃Co₂SbO₆ at 2 K (black) and 20 K (red), below and above $T_N = 14.5 K$, respectively.

NPD data (λ = 2.4395 Å) of rocksalt (Fddd) phase $Li_3Co_2SbO_6$ at 3 K (red) and 125 K (blue). The difference curve (black) shows the possible magnetic Bragg peaks, highlighted with green arrows, indicating long-range magnetic order. The magnetic peaks were unable to be indexed with a rational k-vector indicating that the groundstate is incommensurate.

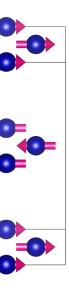
Magnetic Structure from Neutron Diffraction

- The magnetic structure of the honeycomb phase below T_N was able to be determined from NPD. The associated magnetic peaks were able to be indexed unambiguously with a k-vector of $(0 \ 0 \ \frac{1}{2})$, with the order determined to be A-type (ferromagnetic planes, antiferromagnetically coupled).
- This is the first honeycomb oxide to show A-type AFM order with most others showing Zig-Zag order of the spins in the plane. Infield neutron diffraction below T_N also shows clear evidence for a metamagnetic transition at $H \approx 0.7$ T to three-dimensional ferromagnetic order.

Conclusions

- Li₃Co₂SbO₆ is found to adopt two distinct structural forms depending on synthesis conditions.
- Both the polymorphs show long-range AFM order at low temperatures
- The honeycomb phase is the first of its type to show A-type antiferromagnetic order below T_N and undergoes a metamagnetic transition at $H \approx 0.7$ T to three-dimensional ferromagnetic order.
- The rocksalt phase displays multiple AFM transitions. Neutron diffraction data show that the ground state is incommensurate.

Acknowledgements


C.D.L. and B.J.K. received funding for this work from the Australian Research Council – Discovery Projects. A.J.B. received funding from the Australian Institute for Nuclear Science and Engineering – AINSE Honours Scholarship.

Australian Government

Australian Research Council

A-type AFM structure of the honevcomb ith a refined nagnetic moment of 2.53(3) μ_B/Co along b at 3K.

• AFM coupling between layers implies that there are considerable interplane magnetic interactions.

In-field NPD below T_N reveal a metamagnetic "spin-flop" transition to a 3-D FM phase above $H \approx 0.7$ T.