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Introduction
• Lithium garnet oxides have been proposed as a solid-state

electrolyte candidate for Li-ion electrochemical cell.

• Lithium garnets can exists in two phases, a tetragonal
and a higher symmetry cubic arrangement. In 2007, a
cubic phased Li7La3Zr2O12 material was reported with
bulk grain lithium ion conductivity of ∼ 10 −4 S cm−1,
which at the time was higher than reported tetragonal
phase conductivities.[1]

• Li7La3Zr2O12 can be stabilised in the cubic phase by the
elemental doping. One example of cubic phase stabi-
lization due to substitution of Al3+ substitution into the
Li(24d) position forming a stable Li6.16Al0.28La3Zr2O12
cubic phase.[2] Various substitution has been explored
such as the substitution of Ta5+ and Nb5+ into the Zr(16a)
position and Ga3+ into the Li(24d) position.[3, 4, 5]
Gallium doped Li6.25Ga0.25La3Zr2O12 garnets have also
reported high lithium conductivities of 1.46 x 10−3 S
cm−1.[5]

• Here we explore a new dual doped garnet series of
Li6.75−3xGaxLa3Zr1.75Ta0.25O12 (x = 0 - 0.50) and present
the relationship between lithium conductivity, gallium
content, lithium site occupancy and temperature.

Diffraction Analysis
• All samples in this work were prepared via use of a

pressure-less sintering technique with all pellets prepared
in mother powders to avoid any contamination.

• Garnet series Li6.75−3xGaxLa3Zr1.75Ta0.25O12, (x = 0.1 -
0 .5) exist in the cubic space group Ia-3d. (Fig. 1)

• Pure phase samples indicates the inclusion of Ga into the
structure.

Figure 1: Neutron diffraction data from the dual doped gallium
tantalum lithium garnet oxide series Li6.75−3xGaxLa3Zr1.75Ta0.25O12.

• Ionic radius of Ga3+ (62 pm) is larger than Li1+(60 pm).

• Shift in Bragg’s peaks to lower angle observed (Fig. 2)
which is in agreement with Pauling’s principles for ionic
radii.

• Lattice constants from Rietveld refinements of XRD data
sets support this increase with gallium content;

(x = 0.1) = 12.951(2) Å & (x = 0.5) = 12.960(1) Å.

Figure 2: Shift in (8 4 0)Bragg’s reflections in the garnet series of
Li6.75−3xGaxLa3Zr1.75Ta0.25O12 x = 0.1 - 0.5 due to the incorporation
of gallium into the structure which is increasing the unit cell size.

• The lithium sites can be any of Li24d (Tetrahedral), Li48g
(Octahedral) and Li96h (Octahedral Distorted).

• Only present in Li24d and 96h in dual doped system.

• Occupation of Li24d and Li96h sites fit neutron based Ri-
etveld refinement model well. (Fig. 3)

• The exclusion of Li48g site in Rietveld modelling sup-
ported by 7Li NMR results.

Figure 3: Rietveld refinement of neutron powder diffraction data of
gallium (x = 0.1) - tantalum (0.25) garnet oxide.

Figure 4 : Visualization of the different lithium site within the
garnet oxide. Note for this work the Li48g was not modelled in

favour for the Li96h.

• Removal of lithium due to the incorporation of gallium has
a direct effect on lithium site occupancies.

• XRD and NPD refinements show gallium only present in
the Ga24d sites.

• Li24d site occupancies are fairly constant with regard to
gallium content.

• Li24d are partial occupied prior to gallium inclusion. With
the inclusion of gallium we do not see a replacement of
lithium in the Li24d sites.

• Decreasing lithium content in the Li96h sites with regard
to gallium content.

• Overall gallium the co-occupies Ga24d/Li24d site and in-
creases the number of lithium voids in the Li96h sites.

Figure 5 : Refined lithium Li24d and Li96h site occupancies verses
garnet nominal gallium content.

Solid-State NMR
• 7Li NMR spectrum shows one strong signal indicating the

presence of one unique lithium environment.

• Supports the structural modelling of Li24d and Li96h.
Distorted octahedral site (Li96h) lithium would be in near
tetrahedral arrangement with the closest 4 co-ordinate

oxygen. With a weaker interaction of the remain 2 oxy-
gen on the opposite side of the octahedral void.

• Peaks on either side of the main signal are side-bands
produced when measured at 15 kHz. Difference between
main signal and side-bands is 15 kHz.

• 71Ga NMR spectrum shows one signal indicating the pres-
ence of one Ga environment. Supporting the Ga24d occu-
pancy used in the modelling.

Figure 6: Left) 7Li NMR MAS spectra for gallium content x = 0.5
collected at 11.74 MHz. Right) 71Ga NMR spectra for gallium

content x = 0.5 collected at 11.74 T.)

Electrochemical Analysis
• Ionic conductivity determined by electrochemical

impedance analysis of Ag/Garnet/Ag cells.

• Conductivity of the dual doped garnets increased with gal-
lium compared to the gallium-free sample.

• Gallium content of x = 0.2 has the highest conductivity of
7.42 x 10−5 S cm−1).

• Increase conductivity can be due to the increase number of
vacancies within the material, increasing lithium mobility
when compared to the gallium-free samples.

Table 1: Ionic conductivity for the dual-doped garnet series
Li7−3xGaxLa3Zr1.75Ta0.25O12 (x = 0 - 0.5).

Gallium Content Ionic conductivity σtotal (S cm−1) %
0 8.86 x 10−6

0.1 5.04 x 10−5

0.2 7.42 x 10−5

0.3 5.62 x 10−5

0.4 3.63 x 10−5

0.5 5.92 x 10−5

Figure 7: Scanning electron micrographs for dual doped garnets;
Top row Left to right, x = 0, x = 0.1, x = 0.2. Bottom row left to right

x = 0.3, x = 0.4, x = 0.5.

• Scanning electron microscopy to investigate pellet morphology.

• Voids still presence in some of the samples.

• Sample preparation can be improved on to reduce garnet cavitiyes and
decrease grain boundaries.

Conclusions
• Successful solid state preparation of the dual-doped gallium-tantalum

lithium garnet oxide series Li6.75−xGaxLa3Zr1.75Ta0.25O12 (x = 0 - 0.5).

• Structure determined via diffraction and supported by solid-state
NMR.

• The inclusion of gallium does effect garnet ionic conductivity.

• Current preparation method can be improved.
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