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Introduction Long-Range Order — S-XRD Patterns

In accordance with the Paris Climate Agreement, Australia will reduce its carbon = Data were acquired at the Powder Diffraction beamline of the Australian
emissions to 28% of their 2005 levels by 2050 [1]. Synchrotron at 17 keV.

Australia is currently developing two technologies to assist in this transition: next- Patterns show the disappearance of superlattice reflections, as well as the
generation solid-oxide fuel cells and long-term storage for radioactive waste. segregation into a multiphase region from x = 0.134 and the onset of anti-site
Pyrochlores of the structure A,B,0; have been proposed as potential electrolytes disorder pairs from x = 0.402. 0 512
in solid-oxide fuel cells due to their regularly repeating oxygen vacancies and S-XRD. L= 0.7277 A |
structural stability [2]. Different types of disorder (in the form of chemical or
structural defects) have been shown to improve the electrochemical properties of
the material [3].

We aim to investigate various properties of some pyrochlores to establish the
feasibility of specifically engineering types of disorder to be used in next-
generation application use.

-5.10

- 2.08

- 5.06

Lattice Parameter / A
a, Lattice Parameter/ A

pyro.

= Pyrochlore A, a,,, [ 9:04
e Pyrochlore B, a,,., |
4 Defect-Fluonte, 2a,,

d

=

2.0

1 — ' 1 —T T T
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7

Tm Content, x

Figure 2: (Left) S-XRD patterns of the Tm(Ti,_
.Im _)O5../; series, showing the disappearance
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Quantifying Order and Disorder

We are focused on order and disorder at two length scales: long- and short-range. | __

o Long-range average structure was investigated using synchrotron X-ray  — —_JC of superlattice reflectiohs and multiphase
diffraction (S-XRD) and neutron powder diffraction (NPD), providing information e | | regions. (Right) The lattice parameter of each
on the symmetry of the cationic and anionic sublattices respectively. phase.

Short-range local structure was investigated using X-ray absorption near-edge

structure (XANES), providing information on the local geometry and coordination Long-Range Order — NPD Patterns
environments of the metal ions. = Data were acquired at the high-resolution powder diffractometer Echidna at the

Open Pool Australian Lightwater (OPAL) reactor, operated by ANSTO. The
wavelength of the incident neutrons were 1.6215 A.

= Patterns show the persistence of certain superlattice reflections, demonstrating
that pyrochlore-like ordering in the anions is present throughout the entire solid-
solution series.

*= Vacancies in the structure were localised to the O(48f) site.

NPD, L=1.6215A
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Synthesis Techniques

" A standard solid-state synthesis route was taken in preparing a series of
Tm,(Ti, ,Tm )O,_, ‘stuffed” pyrochlores. Tm,03 and TiO, were preheated to 900 °C
to remove adsorbed water and carbon dioxide.

=  The solid-state solutions were annealed at 1000 °C and 1500 °C for 24 hours each,
with grinding in between. The samples were slow-cooled at 0.1 °C min to ensure
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Figure 1: (Left) The ideal pyrochlore structure of Tm,Ti,0, showing thulium polyhedra (blue) and N T 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
titanium octahedra (green). (Right) The defect-fluorite structure of Tm,TiO.. A series of samples was . ‘ v = 0,670 Tm Content, x

Figure 3: (Left) NPD patterns of the Tm,(Ti,_ Tm, )O7../
e 'r*";-..h_lu.__*_ | L series, with * denoting pyrochlore superlattice
. reflections. (Right) Comparing neutron structure factors

Possible Agpllcatlons Oxygen lon COndUCtIVItY a 4@ ® o m oW w0 W for the (111), and (331), superlattice reflections,
" |onic conductivity data was taken using Electrochemical Impedance Spectroscopy 2019 demonstrating pyrochlore-like anion ordering is present.

(EIS). An increase in conductivity 0.08
—a— 1000 °C

's observed with a small amount ] 900 °C Short-Range Local Structure - XANES

of ’stufﬂ.n.g’, and a sharp drop in —=—800 "C = Data were acquired at the Soft X-Ray beamline of the Australian Synchrotron.
condu;:cl.wty afterwards.;H . "= The TiL3,-edge XANES spectra reveal information about the crystal field splitting

" As Tm s larger than T! IS < \ (CFS), going from distorted octahedra to a seven-coordinated arrangement.
possible that the Ia.rger |.ons .act > ;JE-’ - 1 = Achangein the line shape of Peak D is a medium-range effect observed in clusters
a b.o’FtIeneck for fanlon dl.ffuspn. E : \ / of TiO; octahedra. The loss of resolved peak splitting can be explained by the
This ',S also seen in the distortion of v ™] decrease in CFS and an increase in medium-range disorder.
the TiO, polyhedral and the A

constructed by gradually substituting more thulium onto the B-site of the structure.
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S-XRD showed the Tm,(Ti, . Tm )O5.,/, series to be either pyrochlore or a | ———/ Y/ m Content
2-x "' x / v/ o i :
: : . : — 4 Figure 4: (Left) The Ti L, ,-edge of the
multiphase sample, as well as the evolution of anti-site pairs. — £=0.00 . .
. , , , , — Tm,(Ti,_ Tm )05/, series. (Right) The crystal
NPD showed a persistent pyrochlore-like ordering of the oxygen anions, which was — field splitting energy as a function of Tm3*

further supported by structure factor analysis. content content (M) and the intensity ratio
Photon Energy / eV

Short-range local structure shows a more gradual development of local disorder in of Peaks C and D in the sample series (A).
the cation and anion sublattices. In particular, the CFS of the Ti(3d) orbitals

decreases reflecting the distortion of the titanium polyhedra. References
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