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Figure 1: Illustration of the Magnetic 

texture of skyrmions [6].

Small Angle Neutron 
Sca�ering  is ideal to study 
magnetic skyrmions since 
their la�ice distance is 
within 20-100 nm. This is 
confirmed on various 
skyrmion systems [1,7] (see 
figs. 2, 5-7).

The dynamics of skyrmions 
resembles superconducting 
flux vortices and can be 
controlled by external elec-
tric fields. This opens ave-
nues for applications in low-
energy electronics. [1-5].

 

Motivation
Skyrmions are topologically protected particle-like magnetic 
textures consisting of spin rotations with a diameter of ~50 nm, 
typically forming 2D hexagonal structures perpendicular to 
applied magnetic fields (see fig. 1). This ordering can be induced in 
chiral magnets due to the interplay of Dzyaloshinskii-Moriya and 
ferromagnetic exchange interactions. 
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Previous works

Pure and doped single 
crystals of Cu2OSeO3 
can be  grown using 
chemical vapour 
transport. We used 
samples provi-ded by 
colleagues at the 
School of Chemical 
Sciences of the U. of 
Auckland (see fig. 3)

Our samples

Figure 5 (left): Selected SANS pa�erns of 
pure and Tellurium - doped Cu2OSeO3 
samples along different  magnetic phases, 
(see panel labels) including sca�ering rings 
associated with skyrmions [9].
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Small Neutron Sca�ering on 
Cu2OSeO3 single crystals reveals the 
temperature and field dependence of 
the skyrmions and helical observed 
pa�erns (see figs. 5, 6). The magnitude 
of the sca�ering vector can be used as a 
phase transition parameter to gain in 
depth information of the stabilisation of 
these magnetic states. We are preparing 
a theory to model our observations.
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Figure 2: Phase diagram of a) bulk 
and b) thin films of Cu2OSeO3 [2].
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Figure 4: Loren� TEM images taken from our 

Cu2OSeO3 samples in different magnetic phases [8].

ConclusionLoren� TEM

Skyrmions were 
confirmed by 
our colleagues 
at Brookhaven 
National Labs, 
NY, USA, via 
Loren� TEM 
(see fig. 4) [8].

Figure 3: as grown image 
of a Cu2OSeO3 crystal

Figure 6: Neutron 
phase diagrams from 
neutron sca�ering 
intensity across a, d) 
the full temperature 
range reveal low- and 
high-temperature 
skyrmion la�ices, the 
later is zoomed in 
panels b, e). Panels c, f) 
show variations of the 
sca�ering vector.

Figure 7: Zero Field Cooling (ZFC) magnetic field sweeps of unoriented 
Cu2SeO3 reveal changes in a) the sca�ering intensity, b) the magnitude 
of the sca�ering vector, |Q|, and c) the magnetic la�ice parameter, 
which is inversely proportional to |Q| (paper in preparation).

Work in Progress
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