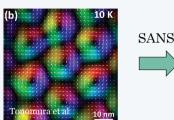

TOPOLOGICAL BARRIER FOR SKYRMION LATTICE FORMATION IN MnSi

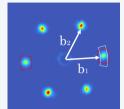
ALLAN W. D. LEISHMAN¹, R. M. MENEZES^{2,3}, G. LONGBONS¹, E. D. BAUER⁴, M. JANOSCHEK^{4,5}, D. HONECKER⁶, L. DEBEER-SCHMITT⁷, J. S. WHITE⁵, A. SOKOLOVA⁸, M. V. MILOŠEVIĆ², M. R. ESKILDSEN¹

1U. NOTRE DAME, 2U. ANTWERP, 3U.F. PERNAMBUCO, 4LANL, 5PSI, 4ILL, 7ORNL, 8ANSTO

MOTIVATION


- Skyrmions are magnetic "bubbles" that are great candidates for information storage due to their topological formation energy.
- Skyrmions in bulk materials tend to arrange themselves into lattices (SkLs).
- The SkL of MnSi is known to be particularly stable, but its formation energy has yet to be measured.

Bloch type skyrmion


SANS ON MnSi

- Small angle neutron scattering (SANS) allows us to image the SkL in reciprocal space.
- This reveals the structure, order, and sample volume fraction of the SkL.

Triangular SkL

(Real Space)

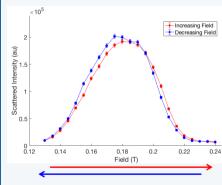
6-fold Bragg Pattern (Reciprocal Space)

(a

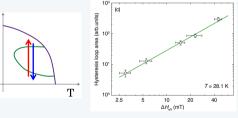
10

Ê ₽, 0.5 '

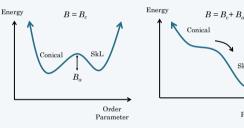
120


160

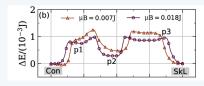
△ Increasing field

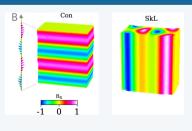

T = 28.1 K

240


SkL HYSTERESIS

- Plotting the SANS intensity as a function of field through the SkL phase, we notice a hysteresis.
- This hysteresis demonstrates nesting for shorter field loops.
- The skyrmion formation energy must be inhibiting the phase transition!

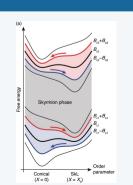

PREISACH MODEL



- Phase transition inhibited by activation barrier B_a.
- -Excellent agreement with data, finding B_a is $\sim 1 \text{ mT}$ for both phase transitions.

SPIN SIMULATIONS

-We can use spin simulations to find min-energy paths between phases.



-Energy barrier depends on SkL domain size!

CONCLUSIONS

- -The topological formation energy inhibits the Con-SkL phase transition in MnSi.
- Skyrmions form in domains of ~100 skyrmions.
- Formation energy in this sample is roughly ~7 eV/ skyrmion.

Order

200

Magnetic field (mT)

Phys. Rev. B 102, 104416