CRYSTAL FIELD INTERACTIONS IN THE CHIRAL COMPOUNDS RNi₃Ga₉ (R = Tb, Dy, Ho and Er) STUDIED BY INELASTIC NEUTRON SCATTERING

Authors: L. A. Gil¹; R. Lora-Serrano¹ and co-authors: J. G. dos Santos Duque², D. Garcia³, S. Cadogan⁴, K. Rule⁵

¹Federal University of Uberlandia, Uberlândia, Brazil. ²Federal University of Sergipe, São Cristóvão, Brazil. ³Bariloche Atomic Centre, Bariloche, Argentina. ⁴University of New South Wales, Canberra, Australia. ⁵ANSTO

Theory

- Crystal Field Hamiltonian (extended Stevens notation): $\hat{H}_{CEF} = B_0^2 O_0^2 + B_0^4 O_0^4 + B_3^4 O_3^4 + B_{-3}^4 O_{-3}^4 + B_0^6 O_0^6 + B_3^6 O_3^6 + B_{-3}^6 O_{-3}^6 + B_6^6 O_6^6 + B_{-6}^6 O_{-6}^6$
- Magnetic susceptibility (Van Vleck equation):

GUFU

$$\chi_0^{\alpha} = g^2 \mu_B^2 \sum_i \rho_i \left[-2 \sum_{j \neq i} \frac{|\langle i | J_{\alpha} | j \rangle|^2}{E_i - E_j} + \frac{1}{k_B T} |\langle i | J_{\alpha} | i \rangle|^2 \right]$$

where: $\widehat{H}_{i=1}|i\rangle = E_i |i\rangle$: $\rho_i = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E_i}{k_B T}} : g = g^{-\frac{E_i}{k_B T}} / \sum_i g^{-\frac{E$

where: $H_{CEF}|i\rangle = E_i|i\rangle$; $\rho_i = e^{-k_BT} / \sum_i e^{-k_BT}$; $\alpha = x, y, z$.

• Double differential cross section for unpolarised neutrons (dipole approximation):

Fig. 1. RNi₃Ga₉ unit cell and RNi₃-layers along the c axis.

Fig. 2. Inelastic Neutron Scattering (INS) spectra of $ErNi_3Ga_9$ for temperatures T= 8, 20, 50 and 100 K obtained at SIKA. The symbols represent the observed data; solid lines are fits to the INS data using the model above.

Fig. 3. Experimental χ^{-1} vs. temperature for single crystals of ErNi₃Ga₉ and HoNi₃Ga₉ in a magnetic field of 1 kOe. χ is the powder (average) susceptibility given by $\chi = \chi_0^{\chi} + \chi_0^{y} + \chi_0^{z}$.

Fig. 4. INS spectra of $HoNi_3Ga_9$ (T = 30 and 100 K). The symbols represent the observed data; solid lines are fits to the INS data using the model above.

Preliminary Conclusions

Our results describe the CEF energy levels' configuration and the relative intensity of the observed peaks in the INS spectrum. The transverse and longitudinal magnetic susceptibilities in the paramagnetic region are reproduced as well.

The results for $TbNi_3Ga_9$ and $DyNi_3Ga_9$ compounds (not shown here) are not yet entirely conclusive; their analysis is ongoing and will be presented elsewhere.

Acknowledgments

The authors thank CAPES-Brazil (grant EST-SENIOR-88881.119768/2016-01) for financial support.

