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Neutron reflectometry: An overview Interpreting PNR patterns

There are some qualitative guidelines for interpreting PNR data as
shown below. In general, as phase information is lost during the
measurement, the data needs to be fitted to extract quantitative details
of the 1D potential (scattering length density).
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Neutron beams can be spin polarised with spin up (+) or down (-) states, which Kiessig fringes in a single reflection are
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The neutron beam interacts near the surface of a material via a 1D quantum potential those layers

involving a nuclear and magnetic contribution. This leads to the phenomena of

neutron birefringence where the two spin states reflect differently. Rate of decay of reflection in Q is
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Neutron Refractive index
depends on magnetisation!

N is the number of atoms / mj Uy is the neutron magnetic moment
<b> is the average nuclear scattering length

m, is the mass of the neutron

Nuclear Scattering Magnetic Scattering

B is the magnetic induction field

Quantifying the neutron interaction potential Modelling virtual thin film systems with DFT
s
‘*J There are many complementary Our group has developed the capability to calculate the magnetic depth profile of
B techniques (e.g. high-resolution TEM, X- single layers and multilayers using spin-polarised density functional theory for slab
ray reflectometry ) that can be used to models implemented in VASP. The steps involved are:
measure the structural parameters in
thin films, and therefore constrain the 1) DFT optimization of the single phases based on their bulk crystal structure cif files
nuclear scattering term for neutron 2) Virtual cleavage of the optimised phases to form thin films surfaces
reflectometry experiments to reduce the 3) Modity the boundary conditions in the z-direction (out-of-plane) by introducing a
1 . 1 J J number of free parameters. vacuum region
___ I ey ' 4) Perform ionic relaxation / damped molecular dynamics to optimise the interface
e L Spn-SID ——— ' , , , , 5) Perform collinear spin-polarized calculations to generate the wave functions, and
[ e e §§ e.g. Direct comparison with crc?ss—sec’.uonal calculate the spin density
I &§ :h;h:":tg TEM and neutron nuclear SLD is possible. 6) Optional: High quality NCSF cycle using the wave functions with spin orbit added
T 1 [ Check out our book chapter! ' Vacuum region
I ecproce) spece i S. Callori, D. L. Cortie, T. Saerbeck, K.-W. Lin Sy
- h T o i momemé : Solid State Physics: SSP Volume 71: AID 18
T osmeom (2020) B,
In contrast, the magnetic sensitivity is unique to PNR, as no other technique can fully —> s v S
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Extracting the magnetic depth profile in Co:Pd layers
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