

Synthesis and structure of KLaTiO₄ and NaLaTiO₄ Ruddlesden-Popper type photocatalysts for water-splitting Junwei Li¹; Brendan J. Kennedy¹; Christopher D. Ling¹; Thomas Maschmeyer¹; Maxim Avdeev^{1, 2}

1 School of Chemistry, The University of Sydney, Sydney, NSW Australia 2 Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, NSW, Australia

· · · · · ·	KLaTiO ₄ , sample 1 Cu k α Rwp = 9.34 %
	Wt % NaLaTiO ₄ : 73.23 ± 0.66 %

Three layer TiO₆ 1

Introduction

Global warming is a current hot topic due to its potential for irreversible environmental damage. Renewable energy sources such as hydrogen are needed. KLaTiO, can be used as photocatalyst for hydrogen evolution, producing 9.540 µmol of H2 gas per hour from 20 mg of catalyst.

KLaTiO₄ was made by heating reagent mixture at 950 °C for 30 minutes, with 55% KNO_3 excess^{1, 2}. $K_2La_2Ti_3O_{10}$ impurity were found, as seen in figure 1. $K_2La_2Ti_3O_{10}$ is a known photocatalyst for hydrogen gas evolution³, therefore, accurate deduction of phase composition is important.

 $K_2La_2Ti_3O_{10}$ 14/mmm

 $K_2La_2Ti_3O_{10}$ and $KLaTiO_4$, are both Ruddlesden-Popper (RP) type layered perovskites as seen in figure 2, with KLaTiO₄ containing 1-layer of TiO₆ perovskites, while $K_2La_2Ti_3O_{10}$ has 3-layers thick perovskite slabs.

Synthesis of NaLaTiO₄

 $NaLaTiO_4$ and $Na_2La_2Ti_3O_{10}$ are isostructural to their potassium counterparts, with first synthesis reported by G. Blasse in 19684 using a sintering temperature of 1000 °C.

Four samples of NaLaTiO₄ were made, with the phase composition of the samples shown in figure 3, demonstrating sintering temperature of 800 °C result in yield of 98 % NaLaTiO, by weight.

More samples were made to test the effect of repeated sintering, amount of Na, CO, excess and reagent packing density have on the yield of NaLaTiO_{$_{1}$}. The results are summarised in figure 4.

Synthesis of KLaTiO₄

KLaTiO, samples were made with different amount of excess KNO₃, which were sintered between 750 - 1000 °C. The weight percentage of KLaTiO₄ are plotted in figure 5.

Samples were found to contain ~ 95 % KLaTiO, when the reagents contained 50 % or above KNO3 excess was sintered at 800 °C or 850 °C. This suggest optimal synthesis temperature of KLaTiO, to be between 800 - 850 °C.

Phase Quantification of KLaTiO₄ and NaLaTiO₄

In order to determine sample purity of both KLaTiO₄ and NaLaTiO₄, Neutron Powder Diffraction (NPD) patterns were obtained, shown in figure 6.

In both PXRD and NPD patterns of KLaTiO₄, $K_2La_2Ti_3O_{10}$ impurities was seen. Phase composition of the sample listed in table 1. KLaTiO₄ was found to be hydrated.

Table 1: Phase composition of KLaTiO₄ as determined by combined Rietveld refinement of PXRD and NPD pattern.

Phase	Weight fraction (%)
KLaTiO ₄ .xH ₂ O	91.72
$K_2La_2Ti_3O_{10}$	8.28

Table 2: Phase composition of NaLaTiO₄ as determined by combined Rietveld refinement

91.66

3.89

0.54

3.91

Weight fraction (%)

of PXRD and NPD pattern.

Phase

 La_2O_3

Na₂CO₃

NaLaTiO₄

 $Na_2La_2Ti_3O_{10}$

Impurities of Na₂La₂Ti₃O₁₀ and La₂O₃can be found in both PXRD and NPD patterns of NaLaTiO₄. Na2CO3 was only apparent in NPD pattern. The phase composition of NaLaTiO4 is shown in table 2.

Conclusion

Yield of 92 % was achieved for KLaTiO₄ and NaLaTiO₄. Factors for synthesis of both samples to be synthesis temperature and alkaline excess in the reagent.

References

1. Kawashima, K.; Hojamberdiev, M.; Chen, S. S.; Yubuta, K.; Wagata, H.; Domen, K.; Teshima, K., Understanding the effect of partial N3--to-O2- substitution and H+-to-K+ exchange on photocatalytic water reduction activity of Ruddlesden-Popper layered perovskite KLaTiO4. Molecular Catalysis 2017, 432, 250-258.

2. Zhu, B.-C.; Tang, K.-B., Rietveld refinement of KLaTiO4 from X-ray powder data. Acta Crystallographica Section E 2011, 67 (4), i26. 3. Huang, Y.; Wei, Y.; Cheng, S.; Fan, L.; Li, Y.; Lin, J.; Wu, J., Photocatalytic property of nitrogen-doped layered perovskite K2La2Ti3O10. Solar Energy Materials and Solar Cells 2010, 94 (5), 761-766.

4. Blasse, G., Crystallographic data of sodium lanthanide titanates (NaLnTiO4). Journal of Inorganic and Nuclear Chemistry 1968, 30 (2), 656-658.

Figure 6: PXRD and NPD pattern of KLaTiO, and NaLaTiO, KLaTiO, sample contained the hydrated KLaTiO₄ .xH₂O (blue), as well as K₂La₂Ti₃O₁₀ (red). NaLaTiO₄ sample contained NaLaTiO₄ (blue), Na₂La₂Ti₃O₁₀ (red), La₂O₃ (orange) and Na₂CO₃ (black). NPD were collected using Echidna instrument in ANSTO.